Introduction
Welcome to the vCon MCP Server documentation!
What is vCon MCP Server?
The vCon MCP Server is a production-ready server that implements the IETF vCon (Virtual Conversation) standard and provides AI assistants with the ability to manage, search, and analyze conversation data through the Model Context Protocol (MCP).
Key Features
IETF vCon Compliant - Fully implements the draft-ietf-vcon-vcon-core-00 specification
AI-Ready - MCP tools for seamless integration with Claude, ChatGPT, and other AI assistants
Advanced Search - Four search modes including semantic search with AI embeddings
Tag System - Flexible key-value metadata for organizing conversations
Plugin Architecture - Extensible for custom functionality and compliance features
Type-Safe - Full TypeScript implementation with Zod validation
Production-Ready - Comprehensive testing, monitoring, and deployment guides
What is vCon?
vCon (Virtual Conversation) is an IETF standard for representing conversations in a portable, interoperable format. It's like "PDF for conversations" - a standardized container that includes:
Conversations from any medium (voice, video, text, email)
Participants with identity information
AI Analysis results (transcription, sentiment, summaries)
Attachments (documents, images, files)
Privacy markers for consent and redaction
Why vCon?
Portability - Move conversation data between systems without vendor lock-in
Interoperability - Standard format works across tools and platforms
Privacy-Ready - Built-in support for consent tracking and data redaction
AI-Friendly - Structured format perfect for AI analysis and processing
What is MCP?
The Model Context Protocol (MCP) is an open standard that enables AI assistants to interact with external tools and data sources. Instead of AI assistants being limited to their training data, MCP allows them to:
Access real-time data from databases and APIs
Perform actions using external tools
Read and write to external systems
Maintain context across conversations
MCP + vCon = Powerful Combination
By combining MCP with vCon, AI assistants can:
Create conversation records from transcripts or recordings
Search through historical conversations
Analyze conversations for insights and patterns
Tag conversations for organization
Extract information from past interactions
Use Cases
Contact Centers
Store and search customer interactions
Analyze agent performance
Track issue resolution
Generate compliance reports
Sales Teams
Record sales calls and meetings
Extract action items automatically
Analyze successful conversation patterns
Generate meeting summaries
Research
Build conversation datasets
Study communication patterns
Train ML models
Analyze language use
Healthcare
Document patient consultations
Maintain HIPAA-compliant records
Track consent and permissions
Generate clinical summaries
Legal & Compliance
Maintain conversation archives
Apply redaction for privacy
Track consent history
Generate audit trails
Architecture Overview
┌─────────────────────┐
│ AI Assistant │ (Claude, ChatGPT, etc.)
│ (MCP Client) │
└──────────┬──────────┘
│ MCP Protocol (stdio/HTTP)
│
┌──────────▼──────────┐
│ vCon MCP Server │ (This project)
│ │
│ ┌───────────────┐ │
│ │ MCP Tools │ │ - Create, read, update, delete
│ │ │ │ - Search (4 modes)
│ │ │ │ - Tag management
│ └───────┬───────┘ │ - Templates & schemas
│ │ │
│ ┌───────▼───────┐ │
│ │ Plugin System │ │ - Custom extensions
│ │ │ │ - Privacy & compliance
│ └───────┬───────┘ │ - Access control
│ │ │
│ ┌───────▼───────┐ │
│ │ Database │ │ - CRUD operations
│ │ Queries │ │ - Search indexing
│ └───────┬───────┘ │ - Tag filtering
│ │ │
└──────────┼──────────┘
│ Supabase Client
│
┌──────────▼──────────┐
│ Supabase │
│ (PostgreSQL) │
│ │
│ ┌───────────────┐ │
│ │ vCon Tables │ │ - Normalized schema
│ │ │ │ - Optimized indexes
│ └───────────────┘ │ - Foreign keys
│ ┌───────────────┐ │
│ │ pgvector │ │ - AI embeddings
│ │ (Embeddings) │ │ - Semantic search
│ └───────────────┘ │
└─────────────────────┘
Next Steps
Ready to get started? Follow our guides:
Installation - Complete installation guide
Basic Usage - Learn the core operations
Getting Started - Quick start for developers
Search Guide - Master the search capabilities
Tag Management - Organize your conversations
Prompts Guide - Understand query prompts
Database Tools - Inspect your database
Documentation Structure
Guide - User-friendly tutorials and how-tos
API Reference - Detailed tool and type documentation
Development - Build, extend, and contribute
Deployment - Production setup and best practices
Reference - IETF specification and technical details
Examples - Code examples and integration patterns
Getting Help
📖 Check the Troubleshooting Guide
💬 Ask in GitHub Discussions
🐛 Report bugs in GitHub Issues
📧 Contact the team at [email protected]
Contributing
We welcome contributions! See our Contributing Guide for details on:
Reporting bugs
Suggesting features
Submitting pull requests
Writing documentation
License
This project is released under the MIT License. See the LICENSE file for details.
Last updated